Secaragaris besar grafik dapat dibedakan menjadi 3 (tiga) macam, yaitu: Grafik batang, grafik garis, dan grafik lingkaran. Adapun pengertian dari masing-masing jenis grafik akan kita bahas sebagai berikut: 1. Grafik batang. Grafik batang adalah grafik yang penyajian datanya mengunakan batang atau persegi panjang. K1Ce0. Fungsi dari grafik?┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄PembahasanGrafik merupakan gambaran/lukisan pasang surut suatu keadaan mengenai proses naik turunnya hasil, statistik dan sebagainya yang berupa penyajian data-data dalam tabel yang ditampilkan dalam bentuk gambar atau garis. Fungsi GrafikUntuk melukiskan/menggambarkan beberapa data dalam bentuk angka yang lebih sederhana, namun teliti. Grafik lingkaran berfungsi menggambarkan informasi dalam persentase. Untuk memperjelas perkembangan serta perbandingan suatu objek yang saling berpautan secara singkat dan padat.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄Pelajari Lebih LanjutLangkah-langkah dalam mambaca grafik, tabel, diagram, peta pada dari denah, grafik, tabel, bagan • • • • • • • • • • • • • • • • • • • • • • • • • • • » Detail Jawaban⚜ Mapel B. Indonesia⚜ Kelas VII SMP⚜ Bab Laporan⚜ Kode kategorisasi 01SamaSamaBelajar Pertanyaan baru di B. Indonesia Perhatikan penggalan resensi berikut ini! Karya Supernova adalah sebuah imajinatif. Sungguh tidak lazim bagi dunia sastra sarat dengan problema filsaf … at dan teori-teori ilmiah. Baru kali ini dalam sastra Indonesia, seorang penulis mampu mengaktualisasikan labirin kehidupan kontemporer secara eksprimentatif dengan gaya yang hampir science fiction. Dalam kutipan tersebut hal yang diresensi adalah .... bahasa pengarang dalam buku kepengaran kekurangan dan keunggulan buku kesimpulan terhadap buku gaya penulisan cerita​ buatkan puisi tentang soto madura ​ buatlah puisi dengan awalan K,A,D,E,M,A,N,G,A,N DENGAN TEMA lingkungan​ buat 2 buah contoh kata benda dan gunakan dalam kalimat​ secara umum sindiran juga kritikan pada teks anekdot berhubungan dengan empat hal sebutkan dan jelaskan ​ Kali ini Sinau Thewe akan menjelaskan fungsi sebuah grafik dan langkah-langkah menggunakannya, berikut penjelasannya Fungsi Grafik di Excel Fungsi grafik adalah untuk menjabarkan data pada sebuah tabel dalam bentuk naik turunnya data sehingga memudahkan pengguna dalam menganalisa. Microshoft Excel menyediakan berbagai macam bentuk Grafik atau yang disebut dengan Chart. Yang mana pada masing-masing bentuk grafik di lengkapi dengan berbagai bentuk pilihan yang ada. Dalam memilih bentuk Chart / Grafik tentunya di sesuaikan dengan kebutuhan data yang ada. Macam-Macam Chart / Grafik Excel 1. Column Chart dan Bar Chart digunakan untuk menampilkan sebuah data dalam bentuk grafik atau diagram batang. 2. Line Chart digunakan untuk menampilkan sebuah data dalam bentuk grafik garis. 3. Pie Chart digunakan untuk menggambarkan sebuah deret data yang ditampilkan dalam diagram lingkaran yang mana data yang dihasilkan merupakan persentase %. 4. Scatter dan Bubble Chart digunakan untuk mengetahui bagaimana variable yang ada pada sumbu X dan juga sumbu Y. Sedangkan bubble chart merupakan variasi dari scatter. Jadi jika kita ingin mengetahui variable yang ada, kita bisa menggunakan jenis grafik ini. 5. Surface dan Radar Chart digunakan untuk mengetahui kombinasi optimal pada data yang ada. Hal ini bisa memperlihatkan area yang ada ditambah dengan nilai yang tertera. A. Cara Menggunakan Grafik / Chart di Excel 1. Buat terlebih dahulu tabel datanya kemudian sorot atau blok range data tersebut termasuk judul kolom dan label. Range ini berfungsi sebagai sumber data pada grafik yang akan kita buat, perhatikan gambar berikut 2. Klik tab Insert, pada group Chart pilih salah satu grafik yang kita inginkan, misalnya Column. Kemudian pada pilihan Drop Down pilih dan klik salah satu bentuk sesuai kebutuhan, perhatikan gambar dibawah ini 3. Maka akan keluar grafik / chart berdasarkan tabel diatas, perhatikan gambar dibawah ini 4. Jika kita merasa tidak yakin dalam memilih bentuk grafik, kita bisa memanfaatkan Recommended Chart berdasarkan tabel tersebut. 5. Sorot / blok range tabelnya, kemudian klik tab Insert, pada group Chart klik Recommended Chart, maka akan keluar pilihan bentuk chart seperti gambar dibawah ini 6. Pilih salah satu bentuk Chart kemudian klik OK. B. Cara Merubah Tipe Chart / Grafik Jika gentuk grafik yang telah kita buat kurang sesuai, kita bisa mengubah bentuk grafik tersebut ke bentuk lainnya tanpa harus meng-insert lagi, caranya adalah sebagai berikut 1. Klik Chart yang telah kita insert tadi. 2. Klik tab Insert 3. Pada group Chart, pilih salah satu bentuk Chart yang sesuai misalnya Line Chart. 4. Kemudian secara otomatis Chart akan berubah kebentuk Chart Line seperti gambar dibawah ini C. Mengubah Desain Grafik / Chart Apabila kita akan mengubah tampilan grafik agar lebih menarik, kita bisa memanfaatkan tab Desain, berikut langkah-langkahnya 1. Klik chart / grafiknya 2. Klik tab Design 3. Pada Group Chart Style, pilih salah satu style yang ada maka tampilan grafik akan berubah seperti gambar dibawah ini D. Menghapus Grafik / Char Langkahnya cukup sederhana 1. Klik Chart / Grafik 2. Tekan tombol Delete pada keyboard maka grafik tersebut akan terhapus. Demikian artikel yang bisa dibagikan, semoga bermanfaat dan terima kasih. Origin is unreachable Error code 523 2023-06-16 043727 UTC What happened? The origin web server is not reachable. What can I do? If you're a visitor of this website Please try again in a few minutes. If you're the owner of this website Check your DNS Settings. A 523 error means that Cloudflare could not reach your host web server. The most common cause is that your DNS settings are incorrect. Please contact your hosting provider to confirm your origin IP and then make sure the correct IP is listed for your A record in your Cloudflare DNS Settings page. Additional troubleshooting information here. Cloudflare Ray ID 7d805b705d310a6d • Your IP • Performance & security by Cloudflare Fungsi Linear - Pengertian Fungsi Linear, Grafik, dan Contoh Soal A. Pengertian Fungsi Linear dan Bentuk Umum Fungsi linear adalah fungsi yang disusun oleh persamaan aljabar yaitu berupa konstanta maupun suku berderajat satu, sehingga menghasilkan garis linear dalam koordinat kartesius. Garis linear merupakan istilah matematika untuk garis lurus. Sebagaimana dalam konsep aljabar, konstanta merupakan suatu nilai tetap, misalnya 1, 2, Π dan e angka Euler. Sedangkan suku berderajat satu merupakan bentuk ekspresi aljabar dengan nilai pangkat variabel sama dengan satu. Navigasi Cepat A. Pengertian Fungsi Linear A1. Bentuk Umum Fungsi Linear A2. Contoh Fungsi Linear B. Grafik Fungsi Linear B1. Cara Membuat Grafik Fungsi Linear Contoh 1 Grafik fx = 2x + 1 Contoh 2 Grafik y = x Contoh 3 Grafik y = 2 horizontal Contoh 4 Grafik 2y = -4 + 2 bukan bentuk umum A1. Bentuk Umum Fungsi Linear Berikut bentuk umum fungsi linear f x → ax + b atau dalam notasi fungsi umum fx = ax + b y = ax + b atau dengan menggunakan definisi kemiringan garis gradien, koefisien a dapat diganti menjadi koefisien gradien m fx = mx + b y = mx + b dengan a = koefisien variabel x Nilai a dalam bentuk umum fungsi linear fx = ax + b merepresentasikan kemiringan garis gradien dalam koordinat kartesius, sehingga bentuk umum fx = ax + b dapat ditulis menjadi fx = mx + b. b = merupakan suatu nilai tetap konstanta Nilai b dalam bentuk umum fungsi fx = ax + b merepresentasikan titik potong garis terhadap sumbu y di koordinat kartesius. A2. Contoh Fungsi Linear Berikut beberapa contoh fungsi linear fx = 2x + 1 bentuk umum y = -4x + 2 bentuk umum fx = x bentuk umum fx = 3 bentuk umum y = 5 bentuk umum x = x + 1 bentuk umum 3y = 3x + 1 bukan bentuk umum 2y = -x + 5 bukan bentuk umum Pada contoh di atas, fungsi 3y = 3x + 1 dan 2y = -x +1 merupakan fungsi linear walaupun tidak mematuhi bentuk umum fungsi linear. Kedua fungsi tersebut diubah ke bentuk umumnya dengan menjadikan koefisien y menjadi 1. Contoh mengubah ke bentuk umum fungsi linear Mengubah 3y = 3x + 1 ke bentuk umum fungsi linear 3y = 3x + 1 ⇔ y = x + 1/3 atau fx = x + 1/3 Jadi, bentuk umumnya adalah fx = x + 1/3 Mengubah 2y = -x + 5 ke bentuk umum fungsi linear 2y = -x + 5 ⇔ y = -1/2x + 5/2 atau fx = -1/2x + 5/2 Jadi, bentuk umumnya adalah fx = -1/2x + 5/2 B. Grafik Fungsi Linear dan Contohnya B1. Cara Membuat Grafik Fungsi Linear Berikut beberapa langkah untuk membuat grafik fungsi linear dalam koordinat kartesius Mengidentifikasi fungsi linear Apakah fungsi termasuk linear? Apakah fungsi sudah sesuai dengan bentuk umum fungsi linear? Jika belum, ubah persamaan ke bentuk umum fungsi linear Merancang grafik fungsi linear Apakah fungsi mempunyai konstanta c? Jika tidak, maka c = 0 dan grafik fungsi memotong titik pusat koordinat kartesius di 0, 0 Jika ya, maka fungsi memotong sumbu y dengan nilai c Apakah fungsi mempunyai variabel bebas ax? Jika tidak mempunyai variabel bebas maka grafik akan berbentuk horizontal a = 0, tidak miring horizontal Jika mempunyai variabel bebas, maka kemiringan grafik gradien ditentukan oleh nilai a dalam bentuk umum y = ax + b ⇔ y = mx + b m 0, miring ke kanan Lakukan substitusi ke model fungsi minimal 2 nilai bebas Menggambar Grafik Menandai titik rancangan grafik Titik Potong Dan titik hasil substitusi Menarik garis dari titik-titik yang telah ditandai Contoh 1 Grafik Fungsi fx = 2x + 1 Identifikasi fungsi linear fx = 2x + 1 Fungsi termasuk linear, karena terdiri dari konstanta dan suku berderajat satu Fungsi sudah sesuai dengan bentuk umum fungsi linear Perancangan grafik fx = 2x + 1 Mempunyai nilai c = 1, sehingga titip potong sumbu y di titik Tp0, 1 Mempunyai koefisien a = 2, sehingga m > 0 dan grafik miring ke kanan Substitusi nilai acak misalnya diambil nilai acak -2 dan 3 diperoleh fx = 2x + 1 y = 2x + 1 f-2 = 2-2 + 1 = -3 Diperoleh titik Ax, y = A-2, -3 f2 = 23 + 1 = 7 Diperoleh titik Bx, y = B3, 7 Menggambar grafik fx = 2x + 1 Sehingga dapat dibuat grafik berikut dalam koordinat kartesius Grafik Fungsi Linear fx = 2x + 1 Contoh 2 Grafik Fungsi y = x Identifikasi fungsi y = x Fungsi termasuk linear, karena tersusun dari suku berpangkat 1 Fungsi sudah sesuai dengan bentuk umum fungsi linear y = x ⇔ fx = x Perancangan grafik fungsi y = x Tidak mempunyai nilai c atau c = 0, sehingga grafik memotong titik koordinat Tp0, 0 Mempunyai koefisien a = 1, sehingga m > 0 dan grafik miring ke kanan Substitusi nilai acak misalnya diambil nilai acak -4 dan 2 diperoleh y = x ⇔ fx = x f-4 = x = -4 Diperoleh titik Ax, y = -4, -4 f2 = x = 2 Diperoleh titik Bx, y = 2, 2 Menggambar fungsi y = x Sehingga dapat dibuat grafik berikut dalam koordinat kartesius Grafik Fungsi Linear y = x Contoh 3 Grafik Fungsi y = 2 Identifikasi fungsi y = 2 Fungsi termasuk linear karena tersusun dari konstanta Fungsi sudah sesuai dengan bentuk umum fungsi linear y = 2 ⇔ fx = 2 Perancangan grafik fungsi y = 2 Fungsi mempunyai nilai c = 2, sehingga grafik memotong sumbu y di Tp0, 2 Fungsi tidak mempunyai variabel bebas, sehingga nilai a = 0 dan grafik berbentuk horizontal Substitusi nilai acak misalnya diambil nilai acak -2 dan 3 diperoleh y = 2 ⇔ fx = 2 f-2 = 2 Diperoleh titik A-2, 2 f3 = 2 Diperoleh titik B3, 2 ∴ Dapat diketahui semua nilai yang disubstitusikan akan bernilai 2 Menggambar fungsi y = 2 Sehingga dapat dibuat grafik berikut dalam koordinat kartesius Grafik Fungsi Linear y = 2 Contoh 4 Grafik Fungsi 2y = -4x + 2 Identifikasi fungsi 2y = -4x + 2 Fungsi merupakan linear karena tersusun oleh konstanta dan suku berderajat satu Fungsi belum memenuhi bentuk umum fungsi linear, karena ruas kanan untuk variabel y mempunyai koefisien bukan satu Sehingga untuk merancang grafik, fungsi diubah ke dalam bentuk umum fungsi linear 2y = -4x + 2 ⇔ y = -4x + 2 2 ⇔ y = -2x + 1 fx = -2x + 1 Sehingga bentuk umum fungsi linear dari 2y = -4x + 2 adalah fx = -2x + 1 Perancangan grafik fungsi dalam bentuk umumnya fx = -2x + 1 Bentuk umum mempunyai nilai c = 1, sehingga grafik fungsi memotong sumbu y di Tp0, 1 Bentuk umum mempunyai koefisien a = -2, sehingga m < 0 dan grafik miring ke kiri Substitusi nilai bebas, misalnya -2 dan 2 diperoleh 2y = -4x + 2 ⇔ y = -2x + 1 fx = -2x + 1 f-2 = -2-2 + 1 = 4 + 1 = 5 Diperoleh titik A-2, 5 f2 = -22 + 1 = -4 + 1 = -3 Diperoleh titik B2, -3 Menggambar grafik fungsi dalam bentuk umumnya Sehingga diperoleh gambar grafik berikut Grafik Fungsi Linear 2y = -4x+1 Tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "Fungsi Linear Pengertian Fungsi Linear, Grafik, dan Contoh Soal". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih...

nyatakan fungsi tersebut dengan grafik